
Julian Joseph
Nov 17, 2023
Building Products in the era of GenAI

#1about 5 minutes
Understanding the shift from predictive to generative AI
Generative AI adds a layer of judgment to traditional predictive models, enabling more nuanced and context-aware responses.
#2about 3 minutes
Keeping pace with the rapid acceleration of GenAI
The rapid release of new features, like increased token limits and advanced APIs, requires constant adaptation as previous tools and libraries quickly become obsolete.
#3about 5 minutes
Identifying key business opportunities for generative AI
Generative AI can solve major business challenges by managing information overload, boosting content creation, and enabling deep personalization in marketing.
#4about 5 minutes
Understanding the core components of a GenAI stack
Building a GenAI product involves integrating foundational models, vector databases for proprietary data, and user-facing clients beyond simple chatbots.
#5about 3 minutes
Building teams that thrive in GenAI's uncertainty
Effective GenAI teams prioritize curiosity and adaptability over specific roles like "prompt engineer" to handle the constant evolution of tools and APIs.
#6about 6 minutes
Adopting product management frameworks for GenAI development
Use frameworks like "Ship to Learn" for rapid iteration and focus on creating a Minimum Lovable Product (MLP) to drive organic user adoption.
#7about 5 minutes
Creating a unified GenAI platform for your enterprise
A centralized platform provides common APIs and capabilities, allowing different business units to build specialized applications without reinventing the core infrastructure.
#8about 7 minutes
Prioritizing governance and data quality in GenAI products
Data quality, privacy, and ethical governance are not afterthoughts but foundational requirements that must be addressed before building any GenAI application.
#9about 6 minutes
Implementing a strategic framework for enterprise GenAI adoption
A successful enterprise strategy involves defining the business purpose, setting up guardrails, building the right tech stack, and hiring adaptable talent.
#10about 6 minutes
Using human language as an API to accelerate innovation
The ability to use natural language to define model behavior and chain tools together via function calling dramatically speeds up development and prototyping.
Related jobs
Jobs that call for the skills explored in this talk.
today
Machine Learning Engineer

Picnic Technologies B.V.
Amsterdam, Netherlands
Intermediate
Senior
5 days ago
Senior Machine Learning Engineer (f/m/d)

MARKT-PILOT GmbH
Stuttgart, Germany
Remote
Senior
1 month ago
(Senior) Experte (w/m/d) Data & KI

Raven51 AG
Karlsruhe, Germany
Senior