Maxim Salnikov
From Traction to Production: Maturing your LLMOps step by step
#1about 1 minute
Understanding the business motivation for adopting AI solutions
AI investments show a significant return on investment, typically yielding three to five dollars back for every dollar spent within about 14 months.
#2about 4 minutes
Overcoming the common challenges in generative AI adoption
Key obstacles to adopting generative AI include the rapid pace of innovation, the need for specialized expertise, data integration complexity, and difficulties in evaluation and operationalization.
#3about 3 minutes
Defining LLMOps and understanding its core benefits
LLMOps is a specialized discipline, similar to DevOps, that combines people, processes, and platforms to automate and manage the lifecycle of LLM-infused applications.
#4about 3 minutes
Differentiating between LLMOps and traditional MLOps
LLMOps focuses on application developers and assets like prompts and APIs, whereas MLOps is geared towards data scientists and focuses on building and training models from scratch.
#5about 5 minutes
Exploring the complete lifecycle of an LLM application
The LLM application lifecycle involves iterative cycles of ideation, building with prompt engineering and RAG, and operationalization, all governed by security and compliance.
#6about 5 minutes
Navigating the four stages of the LLMOps maturity model
The LLMOps maturity model progresses from an initial, manual stage to developing, managed, and finally an optimized stage with full automation and continuous improvement.
#7about 5 minutes
Introducing the Azure AI platform for end-to-end LLMOps
Azure AI provides a comprehensive suite of tools, including the Azure AI Foundry, to support the entire LLM lifecycle from model selection to deployment and governance.
#8about 3 minutes
Using Azure AI for model selection and benchmarking
The Azure AI model catalog offers over 1,800 models and includes powerful benchmarking tools to compare them based on quality, cost, latency, and throughput.
#9about 5 minutes
Building applications with RAG and Azure Prompt Flow
Azure AI Search facilitates retrieval-augmented generation (RAG), while the open-source Prompt Flow framework helps orchestrate, evaluate, and manage complex LLM workflows.
#10about 5 minutes
Deploying and monitoring flows with Azure AI tools
Azure AI enables the deployment of Prompt Flow workflows as scalable endpoints and includes tools for fine-tuning, content safety filtering, and comprehensive monitoring of cost and performance.
#11about 2 minutes
How to assess and advance your LLMOps maturity
To mature your LLMOps practices, start by assessing your current stage, understanding the application lifecycle, and selecting the right tools like Azure AI Foundry.
Related jobs
Jobs that call for the skills explored in this talk.
Picnic Technologies B.V.
Amsterdam, Netherlands
Intermediate
Senior
Python
Structured Query Language (SQL)
+1
Wilken GmbH
Ulm, Germany
Senior
Kubernetes
AI Frameworks
+3
Matching moments
04:57 MIN
Increasing the value of talk recordings post-event
Cat Herding with Lions and Tigers - Christian Heilmann
01:32 MIN
Organizing a developer conference for 15,000 attendees
Cat Herding with Lions and Tigers - Christian Heilmann
05:03 MIN
Building and iterating on an LLM-powered product
Slopquatting, API Keys, Fun with Fonts, Recruiters vs AI and more - The Best of LIVE 2025 - Part 2
03:28 MIN
Why corporate AI adoption lags behind the hype
What 2025 Taught Us: A Year-End Special with Hung Lee
03:15 MIN
The future of recruiting beyond talent acquisition
What 2025 Taught Us: A Year-End Special with Hung Lee
04:27 MIN
Moving beyond headcount to solve business problems
What 2025 Taught Us: A Year-End Special with Hung Lee
03:48 MIN
Automating formal processes risks losing informal human value
What 2025 Taught Us: A Year-End Special with Hung Lee
03:39 MIN
Breaking down silos between HR, tech, and business
What 2025 Taught Us: A Year-End Special with Hung Lee
Featured Partners
Related Videos
From Traction to Production: Maturing your GenAIOps step by step
Maxim Salnikov
DevOps for AI: running LLMs in production with Kubernetes and KubeFlow
Aarno Aukia
Creating Industry ready solutions with LLM Models
Vijay Krishan Gupta & Gauravdeep Singh Lotey
The state of MLOps - machine learning in production at enterprise scale
Bas Geerdink
How to Avoid LLM Pitfalls - Mete Atamel and Guillaume Laforge
Meta Atamel & Guillaume Laforge
How E.On productionizes its AI model & Implementation of Secure Generative AI.
Kapil Gupta
Inside the AI Revolution: How Microsoft is Empowering the World to Achieve More
Simi Olabisi
LLMOps-driven fine-tuning, evaluation, and inference with NVIDIA NIM & NeMo Microservices
Anshul Jindal
Related Articles
View all articles.gif?w=240&auto=compress,format)
.gif?w=240&auto=compress,format)
.gif?w=240&auto=compress,format)

From learning to earning
Jobs that call for the skills explored in this talk.

Startup
Charing Cross, United Kingdom
PyTorch
Machine Learning


ASFOTEC
Canton de Lille-6, France
Senior
GIT
Bash
DevOps
Python
Gitlab
+6

FRG Technology Consulting
Intermediate
Azure
Python
Machine Learning


Codesearch AI
Retortillo de Soria, Spain
Remote
Senior
Azure
DevOps
Python
Docker
+7


