Julian Joseph
Data Science in Retail
#1about 3 minutes
Real-world examples of machine learning in e-commerce
Personalized recommendations on platforms like Amazon and targeted ads on Instagram are powered by machine learning algorithms.
#2about 4 minutes
Introducing audience segmentation with a sample retail dataset
A small customer dataset with features like age, income, and spending score is used to demonstrate the concept of audience segmentation.
#3about 2 minutes
Using exploratory data analysis to visualize customer patterns
Scatter plots are used to visualize relationships between variables like age, income, and spending score to reveal initial customer patterns.
#4about 3 minutes
An overview of different types of clustering algorithms
A comparison of hierarchical, distribution-based, density-based, and centroid-based clustering helps in choosing the right algorithm for a given dataset.
#5about 3 minutes
A step-by-step explanation of the K-means clustering algorithm
The K-means algorithm iteratively assigns data points to the nearest cluster centroid and recalculates centroids until the clusters stabilize.
#6about 2 minutes
Finding the optimal number of clusters with the elbow method
The elbow method helps determine the optimal number of clusters (K) by identifying the point where adding more clusters yields diminishing returns.
#7about 5 minutes
Visualizing and interpreting K-means clustering results
After running the algorithm, visualizing the clusters helps in interpreting the distinct customer segments for targeted marketing strategies.
#8about 8 minutes
Other common machine learning models used in retail
Beyond clustering, models like Market Basket Analysis, Naive Bayes for spam filtering, and Linear Regression for lifetime value prediction are widely used.
#9about 9 minutes
Scaling machine learning models from development to production
Moving a model to production involves a multi-stage pipeline including data engineering, analysis, model development, MLOps, and orchestration.
#10about 4 minutes
Exploring the different roles within a data science team
The data science field includes diverse roles such as data architect, ML engineer, AI product manager, visualization expert, and developer advocate.
#11about 2 minutes
Q&A: Using clustering and other algorithms for fraud detection
While clustering can identify anomalous patterns, other methods like sequence matching or Bayesian networks are often more suitable for fraud detection.
#12about 2 minutes
Q&A: The value of A/B testing for optimizing campaigns
A/B testing is highly valuable for optimizing user experience on websites and streaming platforms but should be applied based on specific team goals.
#13about 2 minutes
Q&A: Key soft skills for a successful data scientist
Curiosity, strong communication skills, and the ability to build rapport with cross-functional teams are crucial soft skills for data scientists.
#14about 2 minutes
Q&A: Addressing privacy and data security in ML models
Protecting user privacy involves masking or removing personally identifiable information (PII) during the data engineering stage before model training.
#15about 2 minutes
Q&A: When and how to use AutoML in your projects
AutoML is a useful tool for creating a baseline model and overcoming initial development blocks, which can then be customized for specific needs.
#16about 3 minutes
Q&A: MLOps tools for building CI/CD pipelines
Tools like Apache Airflow, Google Cloud Composer, and Dataproc are used to automate, schedule, and manage CI/CD pipelines for machine learning jobs.
Related jobs
Jobs that call for the skills explored in this talk.
Picnic Technologies B.V.
Amsterdam, Netherlands
Intermediate
Senior
Python
Structured Query Language (SQL)
+1
WALTER GROUP
Wiener Neudorf, Austria
Intermediate
Senior
Python
Data Vizualization
+1
Matching moments
04:57 MIN
Increasing the value of talk recordings post-event
Cat Herding with Lions and Tigers - Christian Heilmann
01:32 MIN
Organizing a developer conference for 15,000 attendees
Cat Herding with Lions and Tigers - Christian Heilmann
03:28 MIN
Why corporate AI adoption lags behind the hype
What 2025 Taught Us: A Year-End Special with Hung Lee
04:27 MIN
Moving beyond headcount to solve business problems
What 2025 Taught Us: A Year-End Special with Hung Lee
03:15 MIN
The future of recruiting beyond talent acquisition
What 2025 Taught Us: A Year-End Special with Hung Lee
02:44 MIN
Rapid-fire thoughts on the future of work
What 2025 Taught Us: A Year-End Special with Hung Lee
03:39 MIN
Breaking down silos between HR, tech, and business
What 2025 Taught Us: A Year-End Special with Hung Lee
03:48 MIN
Automating formal processes risks losing informal human value
What 2025 Taught Us: A Year-End Special with Hung Lee
Featured Partners
Related Videos
Empowering Retail Through Applied Machine Learning
Christoph Fassbach & Daniel Rohr
Alibaba Big Data and Machine Learning Technology
Dr. Qiyang Duan
Overview of Machine Learning in Python
Adrian Schmitt
Building Products in the era of GenAI
Julian Joseph
Data Fabric in Action - How to enhance a Stock Trading App with ML and Data Virtualization
Andreas Christian
Machine Learning for Software Developers (and Knitters)
Kris Howard
WeAreDevelopers LIVE - Vector Similarity Search Patterns for Efficiency and more
Chris Heilmann, Daniel Cranney, Raphael De Lio & Developer Advocate at Redis
Anomaly Detection - Using unsupervised Machine Learning for detecting anomalies in customer base
Lukas Kölbl
Related Articles
View all articles



From learning to earning
Jobs that call for the skills explored in this talk.


UL Solutions
Barcelona, Spain
Python
Machine Learning

KBC Technologies UK LTD
Bournemouth, United Kingdom
Senior
NLTK
NumPy
Scrum
React
Python
+5

Amazon.com, Inc
Intermediate
R
Python
Matlab
Terraform
Machine Learning
+2

Amazon.com, Inc
Intermediate
Python
Terraform
Machine Learning
Amazon Web Services (AWS)
Scripting (Bash/Python/Go/Ruby)


Amazon.com, Inc
Senior
Spark
Hadoop
PyTorch
Machine Learning
Amazon Web Services (AWS)

Home Shopping Europe GmbH
München, Germany
Python
Gitlab
PySpark
Data Lake
Machine Learning
+3

White Light Digital Marketing
Remote
£30-36K
Junior
API
Python
Data analysis
+2