Viktoria Semaan
Beyond Prompting: Building Scalable AI with Multi-Agent Systems and MCP
#1about 4 minutes
Understanding LLMs, context windows, and RAG
Large language models use tokens to process text, but their limited context window requires retrieval-augmented generation (RAG) to access large or real-time datasets.
#2about 3 minutes
Transitioning from monolithic agents to multi-agent systems
Giving a single LLM agent too many tools leads to confusion and failure, so a multi-agent architecture with specialized agents improves performance and scalability.
#3about 3 minutes
Why AI projects fail and the need for evaluation
Most AI proofs-of-concept fail in production due to a lack of business context, highlighting the need for robust evaluation frameworks like MLflow.
#4about 4 minutes
Demo: Evaluating an agent's RAG tool using MLflow
A practical demonstration shows how to use MLflow with custom metrics like relevance and specificity to identify and fix agent hallucinations in a RAG tool.
#5about 3 minutes
Introducing the Model Context Protocol for tool integration
The Model Context Protocol (MCP) standardizes how agents connect to tools, creating a reusable ecosystem of servers and clients to avoid redundant integration work.
#6about 6 minutes
Demo: Automating workflows with MCP servers and clients
This demo showcases connecting local files, GitHub, and Databricks Genie as MCP servers to a client, enabling complex, automated workflows from a single chat interface.
#7about 2 minutes
Exploring the current limitations and future of MCP
The current challenges for MCP include tool discovery, agent confusion from overlapping server functions, and the lack of a centralized security gateway.
Related jobs
Jobs that call for the skills explored in this talk.
Featured Partners
Related Videos
From A2A to MCP: How AI’s “Brains” are Connecting to “Arms and Legs”
Brad Axen
Beyond Chatbots: How to build Agentic AI systems
Philipp Schmid
Agentic AI - From Theory to Practice: Developing Multi-Agent AI Systems on Azure
Ricardo
On a Secret Mission: Developing AI Agents
Jörg Neumann
MCP Mashups: How AI Agents are Reviving the Programmable Web
Angie Jones
Agents for the Sake of Happiness
Thomas Dohmke
Azure AI Foundry for Developers: Open Tools, Scalable Agents, Real Impact
Oliver Will
Building Blocks for Agentic Solutions in your Enterprise
Dennis Zielke, Rene Pajta
From learning to earning
Jobs that call for the skills explored in this talk.


Senior Backend Engineer – AI Integration (m/w/x)
chatlyn GmbH
Vienna, Austria
Senior
JavaScript
AI-assisted coding tools
Agentic AI Architect - Python, LLMs & NLP
FRG Technology Consulting
Intermediate
Azure
Python
Machine Learning
AI/ML Team Lead - Generative AI (LLMs, AWS)
Provectus
Canton de Saint-Mihiel, France
Remote
€96K
Senior
Python
PyTorch
TensorFlow
+4
AI/ML Team Lead - Generative AI (LLMs, AWS)
Provectus
Canton de Saint-Mihiel, France
Remote
€96K
Senior
Python
PyTorch
TensorFlow
+4
AI Multi-Agent Systems Architect (m/w/d)
autonomous-teaming
Potsdam, Germany
Remote
API
Azure
DevOps
Python
+3
Full-Stack Engineer - AI Agentic Systems
autonomous-teaming
Potsdam, Germany
Remote
Linux
Redis
React
Python
+7





