Chris Heilmann, Daniel Cranney, Raphael De Lio & Developer Advocate at Redis
WeAreDevelopers LIVE - Vector Similarity Search Patterns for Efficiency and more
#1about 8 minutes
Getting hired through open source and passion projects
Hear how contributing to open source and sharing your work publicly can lead directly to job opportunities in developer advocacy.
#2about 5 minutes
How critical analysis can accelerate your career
Discover how publicly analyzing and improving upon existing technologies can make you a highly visible and attractive candidate for top companies.
#3about 3 minutes
The hidden costs of large LLM context windows
Understand why simply using larger context windows in models like GPT-5 is not a scalable or cost-effective solution for production applications.
#4about 3 minutes
A quick primer on vectors and vector search
A brief explanation of how text is converted into numerical vectors to represent its semantic meaning, enabling similarity searches.
#5about 9 minutes
Using semantic classification to categorize text
Learn how to use a vector database with reference examples to classify text, avoiding costly LLM calls for simple categorization tasks.
#6about 5 minutes
Implementing semantic routing for tool calling and guardrails
Discover how to use semantic routing to direct user prompts to the correct function or to block inappropriate topics without involving an LLM.
#7about 6 minutes
Reducing latency and cost with semantic caching
Implement semantic caching to store and retrieve answers for semantically similar user questions, drastically reducing redundant LLM calls and improving response time.
#8about 6 minutes
Optimizing accuracy for classification and tool calling
Explore techniques like self-improvement, hybrid fallbacks, and prompt chunking to fine-tune and improve the accuracy of your semantic patterns.
#9about 4 minutes
Advanced caching with specialized embedding models
Learn how to avoid common caching pitfalls, such as misinterpreting negation, by using specialized embedding models trained for semantic caching.
#10about 16 minutes
Q&A on data freshness, persistence, and management
The discussion covers practical considerations like preventing stale cache data with TTL, managing data ownership, and how Redis handles persistence.
Related jobs
Jobs that call for the skills explored in this talk.
Wilken GmbH
Ulm, Germany
Senior
Kubernetes
AI Frameworks
+3
Picnic Technologies B.V.
Amsterdam, Netherlands
Intermediate
Senior
Python
Structured Query Language (SQL)
+1
Matching moments
04:57 MIN
Increasing the value of talk recordings post-event
Cat Herding with Lions and Tigers - Christian Heilmann
03:17 MIN
Selecting strategic partners and essential event tools
Cat Herding with Lions and Tigers - Christian Heilmann
03:28 MIN
Why corporate AI adoption lags behind the hype
What 2025 Taught Us: A Year-End Special with Hung Lee
02:44 MIN
Rapid-fire thoughts on the future of work
What 2025 Taught Us: A Year-End Special with Hung Lee
05:18 MIN
Incentivizing automation with a 'keep what you kill' policy
What 2025 Taught Us: A Year-End Special with Hung Lee
03:38 MIN
Balancing the trade-off between efficiency and resilience
What 2025 Taught Us: A Year-End Special with Hung Lee
03:15 MIN
The future of recruiting beyond talent acquisition
What 2025 Taught Us: A Year-End Special with Hung Lee
04:27 MIN
Moving beyond headcount to solve business problems
What 2025 Taught Us: A Year-End Special with Hung Lee
Featured Partners
Related Videos
Reducing LLM Calls with Vector Search Patterns - Raphael De Lio (Redis)
Develop AI-powered Applications with OpenAI Embeddings and Azure Search
Rainer Stropek
What comes after ChatGPT? Vector Databases - the Simple and powerful future of ML?
Erik Bamberg
Enter the Brave New World of GenAI with Vector Search
Mary Grygleski
WeAreDevelopers LIVE – AI vs the Web & AI in Browsers
Chris Heilmann, Daniel Cranney & Raymond Camden
How to Avoid LLM Pitfalls - Mete Atamel and Guillaume Laforge
Meta Atamel & Guillaume Laforge
Accelerating GenAI Development: Harnessing Astra DB Vector Store and Langflow for LLM-Powered Apps
Dieter Flick & Michel de Ru
Building Real-Time AI/ML Agents with Distributed Data using Apache Cassandra and Astra DB
Dieter Flick
Related Articles
View all articles



From learning to earning
Jobs that call for the skills explored in this talk.

Forschungszentrum Jülich GmbH
Jülich, Germany
Intermediate
Senior
Linux
Docker
AI Frameworks
Machine Learning

FRG Technology Consulting
Intermediate
Azure
Python
Machine Learning

autonomous-teaming
München, Germany
Remote
C++
GIT
Linux
Python
+1

Imec
Azure
Python
PyTorch
TensorFlow
Computer Vision
+1

Deloitte
Leipzig, Germany
Azure
DevOps
Python
Docker
PyTorch
+6


Comunidad de Madrid
Municipality of Madrid, Spain
€40-60K
Figma
Python
Agile Methodologies

autonomous-teaming
Canton of Toulouse-5, France
Remote
C++
GIT
Linux
Python
+1

European Tech Recruit
Retortillo de Soria, Spain
Junior
Python
Docker
PyTorch
Computer Vision
Machine Learning
+1