Dieter Flick
Building Real-Time AI/ML Agents with Distributed Data using Apache Cassandra and Astra DB
#1about 3 minutes
Introducing the DataStax real-time data cloud
The platform combines Apache Cassandra, Apache Pulsar, and Kaskada to provide a flexible database, streaming, and machine learning solution for developers.
#2about 3 minutes
Interacting with Astra DB using GraphQL and REST APIs
A live demonstration shows how to create a schema, ingest data, and query tables in Astra DB using both GraphQL and REST API endpoints.
#3about 1 minute
Understanding real-time AI and its applications
Real-time AI leverages the most recent data to power predictive analytics and automated actions, as seen in use cases from Uber and Netflix.
#4about 2 minutes
What is Retrieval Augmented Generation (RAG)?
RAG is a pattern that allows large language models to access and use your proprietary, up-to-date data to provide contextually relevant responses.
#5about 3 minutes
Key steps for building a generative AI agent
The process involves defining the agent's purpose, choosing an LLM, selecting context data, picking an embedding model, and performing prompt engineering.
#6about 3 minutes
Exploring the architecture of a RAG system
A RAG system uses a vector database to perform a similarity search on data embeddings, finding relevant context to enrich the prompt sent to the LLM.
#7about 3 minutes
Generating vector embeddings from text content
A Jupyter Notebook demonstrates splitting source text into chunks and using an embedding model to create vector representations for storage and search.
#8about 4 minutes
The end-to-end data flow of a RAG query
A user's question is converted into an embedding, used for a similarity search in the vector store, and the results are combined with other context to build a final prompt.
#9about 3 minutes
Executing a RAG prompt to get an LLM response
The demo shows how the context-enriched prompt is sent to an LLM to generate a relevant answer, including how to add memory for conversational history.
#10about 3 minutes
Getting started with the Astra DB vector database
Resources are provided for getting started with Astra DB, including quick starts, a free tier for developers, and information on multi-cloud region support.
Related jobs
Jobs that call for the skills explored in this talk.
Wilken GmbH
Ulm, Germany
Senior
Kubernetes
AI Frameworks
+3
ROSEN Technology and Research Center GmbH
Osnabrück, Germany
Senior
TypeScript
React
+3
Matching moments
03:28 MIN
Why corporate AI adoption lags behind the hype
What 2025 Taught Us: A Year-End Special with Hung Lee
03:15 MIN
The future of recruiting beyond talent acquisition
What 2025 Taught Us: A Year-End Special with Hung Lee
04:27 MIN
Moving beyond headcount to solve business problems
What 2025 Taught Us: A Year-End Special with Hung Lee
02:44 MIN
Rapid-fire thoughts on the future of work
What 2025 Taught Us: A Year-End Special with Hung Lee
03:48 MIN
Automating formal processes risks losing informal human value
What 2025 Taught Us: A Year-End Special with Hung Lee
04:22 MIN
Why HR struggles with technology implementation and adoption
What 2025 Taught Us: A Year-End Special with Hung Lee
03:13 MIN
How AI can create more human moments in HR
The Future of HR Lies in AND – Not in OR
05:18 MIN
Incentivizing automation with a 'keep what you kill' policy
What 2025 Taught Us: A Year-End Special with Hung Lee
Featured Partners
Related Videos
Accelerating GenAI Development: Harnessing Astra DB Vector Store and Langflow for LLM-Powered Apps
Dieter Flick & Michel de Ru
Build RAG from Scratch
Phil Nash
Carl Lapierre - Exploring Advanced Patterns in Retrieval-Augmented Generation
Carl Lapierre
Building Blocks of RAG: From Understanding to Implementation
Ashish Sharma
Langchain4J - An Introduction for Impatient Developers
Juarez Junior
Graphs and RAGs Everywhere... But What Are They? - Andreas Kollegger - Neo4j
Building AI Applications with LangChain and Node.js
Julián Duque
Make it simple, using generative AI to accelerate learning
Duan Lightfoot
Related Articles
View all articles



From learning to earning
Jobs that call for the skills explored in this talk.

Forschungszentrum Jülich GmbH
Jülich, Germany
Intermediate
Senior
Linux
Docker
AI Frameworks
Machine Learning


FRG Technology Consulting
Intermediate
Azure
Python
Machine Learning

Zendesk
Berlin, Germany
Remote
API
Python
FastAPI
Machine Learning
+1




autonomous-teaming
München, Germany
Remote
API
React
Python
TypeScript
