David vonThenen
Confuse, Obfuscate, Disrupt: Using Adversarial Techniques for Better AI and True Anonymity
#1about 1 minute
The importance of explainable AI and data quality
AI models are only as good as their training data, which is often plagued by bias, noise, and inaccuracies that explainable AI helps to uncover.
#2about 3 minutes
Identifying common data inconsistencies in AI models
Models can be compromised by issues like annotation errors, data imbalance, and adversarial samples, which can be measured with tools like Captum.
#3about 2 minutes
The dual purpose of adversarial AI attacks
Intentionally introducing adversarial inputs can be used for good to test model boundaries, or for bad to obfuscate data and protect personal privacy.
#4about 3 minutes
How to confuse NLP models with creative inputs
Natural language processing models can be disrupted using techniques like encoding, code-switching, misspellings, and even metaphors to prevent accurate interpretation.
#5about 4 minutes
Visualizing model predictions with the Captum library
The Captum library for PyTorch helps visualize which parts of an input, like words in a sentence or pixels in an image, contribute most to a model's final prediction.
#6about 6 minutes
Manipulating model outputs with subtle input changes
Simple misspellings can flip a sentiment analysis result from positive to negative, and adding a single pixel can cause an image classifier to misidentify a cat as a dog.
#7about 2 minutes
Using an adversarial pattern t-shirt to evade detection
A t-shirt printed with a specific adversarial pattern can disrupt a real-time person detection model, effectively making the wearer invisible to the AI system.
#8about 2 minutes
Techniques for defending models against adversarial attacks
Defenses against NLP attacks include normalization and grammar checks, while vision attacks can be mitigated with image blurring, bit-depth reduction, or advanced methods like FGSM.
#9about 2 minutes
Defeating a single-pixel attack with image blurring
Applying a simple Gaussian blur to an image containing an adversarial pixel smooths out the manipulation, allowing the model to correctly classify the image.
Related jobs
Jobs that call for the skills explored in this talk.
Wilken GmbH
Ulm, Germany
Senior
Kubernetes
AI Frameworks
+3
Matching moments
04:57 MIN
Increasing the value of talk recordings post-event
Cat Herding with Lions and Tigers - Christian Heilmann
03:28 MIN
Why corporate AI adoption lags behind the hype
What 2025 Taught Us: A Year-End Special with Hung Lee
03:15 MIN
The future of recruiting beyond talent acquisition
What 2025 Taught Us: A Year-End Special with Hung Lee
03:48 MIN
Automating formal processes risks losing informal human value
What 2025 Taught Us: A Year-End Special with Hung Lee
05:18 MIN
Incentivizing automation with a 'keep what you kill' policy
What 2025 Taught Us: A Year-End Special with Hung Lee
04:22 MIN
Why HR struggles with technology implementation and adoption
What 2025 Taught Us: A Year-End Special with Hung Lee
04:27 MIN
Moving beyond headcount to solve business problems
What 2025 Taught Us: A Year-End Special with Hung Lee
14:06 MIN
Exploring the role and ethics of AI in gaming
Devs vs. Marketers, COBOL and Copilot, Make Live Coding Easy and more - The Best of LIVE 2025 - Part 3
Featured Partners
Related Videos
Hacking AI - how attackers impose their will on AI
Mirko Ross
Beyond the Hype: Building Trustworthy and Reliable LLM Applications with Guardrails
Alex Soto
AI: Superhero or Supervillain? How and Why with Scott Hanselman
Scott Hanselman
A hundred ways to wreck your AI - the (in)security of machine learning systems
Balázs Kiss
The AI Elections: How Technology Could Shape Public Sentiment
Martin Förtsch & Thomas Endres
Skynet wants your Passwords! The Role of AI in Automating Social Engineering
Wolfgang Ettlinger & Alexander Hurbean
The AI Security Survival Guide: Practical Advice for Stressed-Out Developers
Mackenzie Jackson
Manipulating The Machine: Prompt Injections And Counter Measures
Georg Dresler
Related Articles
View all articles



From learning to earning
Jobs that call for the skills explored in this talk.

Forschungszentrum Jülich GmbH
Jülich, Germany
Intermediate
Senior
Linux
Docker
AI Frameworks
Machine Learning

autonomous-teaming
Berlin, Germany
Remote
ETL
NoSQL
NumPy
Python
+3

autonomous-teaming
München, Germany
Remote
C++
GIT
Linux
Python
+1




Abnormal AI
Intermediate
API
Spark
Kafka
Python

autonomous-teaming
München, Germany
Remote
API
React
Python
TypeScript

FRG Technology Consulting
Intermediate
Azure
Python
Machine Learning